什么是循环小数
循环小数,是指从小数点后某一位开始不断地重复出现前一个或一节数字的十进制无限小数,叫做循环小数,可分为有限循环小数,如:1.123123123(不可添加省略号)和无限循环小数,如:1.123123123……(有省略号)。前者是有限小数,后者是无限小数。
循环小数
循环小数英文名:circulating decimal
两数相除,如果得不到整数商,会有两种情况:一种,得到有限小数。一种,得到无限小数。
从小数点后某一位开始不断地重复出现前一个或一节数字的十进制无限小数,叫做循环小数,如2.1666...*(混循环小数),35.232323...(循环小数),20.333333…(循环小数)等,被重复的一个或一节数字称为循环节。循环小数的缩写法是将第一个循环节以后的数字全部略去,而在第一个循环节首末两位上方各添一个小点。例如:
2.966666... 缩写为 2. 96(6上面有一个点;它读作“二点九六,六循环”)
35.232323…缩写为 35.23(2、3上面分别有一个点;它读作“三十五点二三,二三循环”)
循环小数可以利用等比数列求和(附链接:等比数列)的方法化为分数。例如图中的化法。
所以在数的分类中,循环小数属于有理数。
望采纳谢谢o(≧v≦)o
循环小数有哪几种
循环小数分为两种:
1、纯循环小数:自小数点后的十分位开始循环,比如:0.3333333……就是纯循环小数。
2、混循环小数:自小数点后十分位不开始循环,后面才开始循环,比如:0.322222222222……就是混循环小数。
扩展资料:
1、将纯循环小数改写成分数,分子是一个循环节的数字组成的数;分母各位数字都是9,9的个数与循环节中的数字的个数相同。
例如:0.111...=1/9、0.12341234...=1234/9999。
2、将混循环小数改写成分数,分子是不循环部分与第一个循环节连成的数字组成的数,减去不循环部分数字组成的数之差;分母的头几位数字是9,末几位数字是0,9的个数跟循环节的数位相同,0的个数跟不循环部分的数位相同。
例如:0.1234234234…=(1234-1)/9990 0.55889888988898...=(558898-55)/999900。
参考资料来源:百度百科-循环小数
循环小数怎么写咯?
循环小数可分为有限循环小数, 从小数点后某一位开始不断地重复出现前一个或一节数码的十进制无限小数。如2.1666…,35.232323…等,被重复的一个或一节数码称为循环节。循环小数的缩写法是将第一个循环节以后的数码全部略去,而在保留的循环节首末两位上方各添一个小点。
1、数学:数学(mathematics),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。借用《数学简史》的话,数学就是研究集合上各种结构(关系)的科学,可见,数学是一门抽象的学科,而严谨的过程是数学抽象的关键。数学在人类历史发展和社会生活中发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
2、小数:小数由整数部分、小数部分和小数点组成。当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数小数是十进制分数的一种特殊表现形式。分母是10、100、1000……的分数可以用小数表示。所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。无理数为无限不循环小数。
3、循环小数:一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:0.33……循环节是"3"例如: 2.14242……循环节是"42"纯循环小数:循环节从小数部分第一位开始的。(例:0.666……)混循环小数:循环节不是从小数部分第一位开始的。(例:0.566……)写循环小数时,为了简便,小数的循环部分只写出第一个循环节。如果循环节只有一个数字,就在这个数字上加一个圆点,如果循环节有一个以上的数字,就在这个循环节的首位和末位的数字上各加一个圆点。
简单点说比如:1.33333…写作1.3,“3”上加一点
1.313131...写作1.31,“3”“1”上加点
1.325632563256...写作1.3256,“3”“6“上加点